Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37111607

RESUMO

This study aimed to develop films of chitosan (CSF) associated with pentoxifylline (PTX) for healing cutaneous wounds. These films were prepared at two concentrations, F1 (2.0 mg/mL) and F2 (4.0 mg/mL), and the interactions between the materials, structural characteristics, in vitro release, and morphometric aspects of skin wounds in vivo were evaluated. The formation of the CSF film with acetic acid modifies the polymeric structure, and the PTX demonstrates interaction with the CSF, in a semi-crystalline structure, for all concentrations. The release for all films was proportional to the concentration, with two phases: a fast one of ≤2 h and a slow one of >2 h, releasing 82.72 and 88.46% of the drug after 72 h, being governed by the Fickian diffusion mechanism. The wounds of the mice demonstrate a reduction of up to 60% in the area on day 2 for F2 when compared to CSF, F1, and positive control, and this characteristic of faster healing speed for F2 continues until the ninth day with wound reduction of 85%, 82%, and 90% for CSF, F1, and F2, respectively. Therefore, the combination of CSF and PTX is effective in their formation and incorporation, demonstrating that a higher concentration of PTX accelerates skin-wound reduction.

2.
Drug Deliv Transl Res ; 10(6): 1748-1763, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32924099

RESUMO

The Melaleuca alternifolia essential oil (MEO) has been widely used due to its healing and antimicrobial action. Its incorporation into drug delivery systems is a reality, and numerous studies have already been developed for this purpose. In this regard, the aim of this work was to develop, characterize, and evaluate the in vivo pharmacological activity of bicontinuous microemulsions (BME) containing MEO. Through diagram construction, a formulation consisting of Kolliphor® HS 15 (31.05%), Span® 80 (3.45%), isopropyl myristate (34.5%), and distilled water (31%) was selected and MEO was incorporated in the proportion of 3.45% (v/v). Morphological analysis characterization confirms that the system studied herein is a BME. The evaluated formulation showed physicochemical characteristics that allow its topical use. Rheologically, samples were characterized as pseudo-plastic non-Newtonian thixotropic fluids. The chromatographic method developed is in accordance with the current recommendations. The extraction method used assured a 100% recovery of the pharmacological marker (terpinen-4-ol). In vivo studies suggest that BME loaded with MEO may contribute to the healing process of skin wounds. In addition, it demonstrated antibacterial activity for Gram-positive and Gram-negative bacteria. Therefore, the BME system loaded with MEO is promising as a healing and antimicrobial agent for skin wounds.Graphical abstract.


Assuntos
Antibacterianos , Melaleuca , Óleo de Melaleuca , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Melaleuca/química , Óleo de Melaleuca/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...